Extensions of Some Parametric Families of D(16)-Triples

نویسنده

  • Alan Filipin
چکیده

Let n be an integer. A set ofm positive integers is called a D(n)-m-tuple if the product of any two of them increased by n is a perfect square. In this paper, we consider extensions of some parametric families of D(16)-triples. We prove that if {k − 4,k + 4,4k,d}, for k ≥ 5, is a D(16)-quadruple, then d = k3 − 4k. Furthermore, if {k− 4,4k,9k− 12}, for k > 5, is a D(16)-quadruple, then d = 9k3− 48k2 + 76k− 32. But for k = 5, this statement is not valid. Namely, the D(16)-triple {1,20,33} has exactly two extensions to a D(16)quadruple: {1,20,33,105} and {1,20,33,273}.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some properties of the parametric relative operator entropy

The notion of entropy was introduced by Clausius in 1850, and some of the main steps towards the consolidation of the concept were taken by Boltzmann and Gibbs. Since then several extensions and reformulations have been developed in various disciplines with motivations and applications in different subjects, such as statistical mechanics, information theory, and dynamical systems. Fujii and Kam...

متن کامل

On the irreducible characters of Camina triples

The Camina triple condition is a generalization of the Camina condition in the theory of finite groups. The irreducible characters of Camina triples have been verified in the some special cases. In this paper, we consider a Camina triple (G,M,N)  and determine the irreducible characters of G in terms of the irreducible characters of M and G/N.  

متن کامل

On Schur Multipliers of Pairs and Triples of Groups with Topological Approach

In this paper, using a relation between Schur multipliers of pairs and triples of groups, the fundamental group and homology groups of a homotopy pushout of Eilenberg-MacLane spaces, we present among other things some behaviors of Schur multipliers of pairs and triples with respect to free, amalgamated free, and direct products and also direct limits of groups with topological approach.

متن کامل

Asteroidal number for some product graphs

The notion of Asteroidal triples was introduced by Lekkerkerker and Boland [6]. D.G.Corneil and others [2], Ekkehard Kohler [3] further investigated asteroidal triples. Walter generalized the concept of asteroidal triples to asteroidal sets [8]. Further study was carried out by Haiko Muller [4]. In this paper we find asteroidal numbers for Direct product of cycles, Direct product of path and cy...

متن کامل

A note on the Roman domatic number of a digraph

Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007